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1. Introduction

The anti-de Sitter / conformal field theory (AdS/CFT) correspondence equates the low-

energy effective theory of string theory, supergravity, on the background AdS5 × S5 with

N = 4 supersymmetric SU(Nc) Yang-Mills (SYM) theory in the limits of large-Nc and large

’t Hooft coupling λ = g2
YMNc [1]. This conjectured correspondence was originally motivated

by the study of solutions of coincident D3-branes in string theory. A finite temperature

in the field theory is dual to supergravity in an AdS-Schwarzschild background where the

SYM theory temperature T is identified with the Hawking temperature of the AdS black

hole [2, 3].

The N = 4 SYM theory contains fields in the adjoint representation only. Fields in

the fundamental representation may be included by introducing N = 2 hypermultiplets.

Introducing a small number Nf ≪ Nc of them, the theory will remain approximately

conformal to leading order in Nc since the beta function goes as Nf/Nc. On the supergravity

side this corresponds to introducing D7-branes and hence open string degrees of freedom [4].

These branes are introduced in the probe limit, meaning we have only Nf ≪ Nc of them,

and hence the AdS background is left unchanged. In other words, we neglect the back-

reaction of the D7-branes on the geometry.

Recently, the authors of [5] initiated a study of this theory at finite baryon number

density and in particular began to construct the phase diagram of this theory in the canon-

ical ensemble. The hypermultiplet fields have a global U(Nf )V vector symmetry and we

may identify the U(1)B subgroup of this as “baryon number” [5]. In holography, a global

symmetry of the field theory will be dual to some gauge invariance in the gravity theory.

In this case a finite baryon density 〈J t〉 for U(1)B current Jµ (the exact operator is written
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in [5]) is dual on the supergravity side to a nontrivial configuration for the U(1) gauge field

on the D7-brane worldvolume.

A simple thought experiment shows how this finite density of hypermultiplet fields

behaves similarly to a finite density of electrons in a metal (hence our title). We have

a constant U(1)B charge density 〈J t〉 distributed evenly thoughout all of space. If we

introduce a non-dynamical, external electric field coupled to baryon number we expect our

charge carriers to move in the direction of the applied field. Due to resistance from the

N = 4 SYM theory plasma the charge carriers will not accelerate forever but will reach a

steady state. If the field E points in the x direction, say, we expect a constant, nonzero

current 〈Jx〉 and we can define a conductivity σ by

〈Jx〉 = σE (1.1)

Our goal in this paper is to compute σ using AdS/CFT.

In the field theory the hypermultiplets may be given an N = 2 supersymmetry-

preserving mass term. This appears in the supergravity theory, for an AdS background

without a horizon, as D7-branes that end at some radial position in AdS [4]. The D7-brane

is extended in all the AdS5 directions and wraps an S3 ⊂ S5. The position of the S3 on

the S5 may be allowed to change with radius and, being a trivial cycle, may collapse to a

point. The radial position where this occurs is where the D7-brane ends.

When the background is AdS-Schwarzschild and a horizon is present two topologically

distinct classes of D7-brane solutions are possible. The first are analogous to the zero

temperature solutions: D7-branes ending outside the horizon. These are called Minkowski

solutions (even in Euclidean signature). The second are D7-branes that “fall into” the

horizon, called black hole solutions. These are D7-branes that fill AdS and intersect the

horizon, thus developing a worldvolume horizon. As we change the position where the brane

ends we find that the D7-brane will “jump” from ending outside the horizon to falling into

it. In other words, the D7-brane undergoes a topology-changing transition which by now

is very well understood [6 – 10]. Roughly speaking, the Minkowski solutions are dual to

large mass in the boundary theory while black hole solutions are dual to small mass where

“large” and “small” here are relative to the temperature. The topology-changing transition

in the bulk appears in the boundary theory as a first-order phase transition that occurs as

the hypermultiplet mass is dialed down.

To compute the conductivity we will make great use of two discoveries of [5]. The

first is that when the D7-brane worldvolume gauge field corresponding to a finite charge

density is turned on only black hole embeddings are physically allowed. This means that

somehow the black hole solutions alone “know” holographically about the entire range of

hypermultiplet masses.1 How can black hole solutions encode large mass in the boundary

theory? This was the second important discovery of [5]. For large hypermultiplet mass

in the boundary theory the D7-brane nearly resembles a Minkowski solution: it almost

ends far from the horizon but develops a “spike” that extends all the way down to the

1The first-order transition mentioned above persists at small density but the line of transitions eventually

ends in a critical point [5]. More on this below.
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horizon. Instead of collapsing to a point the S3 inside the S5 stays at a small but constant

volume along the spike. In fact this spike has an action identical to a bundle of strings [5].

This makes intuitive sense since a single quark in the field theory is represented in the

supergravity theory as a single string and a finite density of quarks should appear as very

many strings. What is perhaps surprising is that the D7-brane alone, with no strings

introduced “by hand,” realizes such strings via a spike. In any case, for our analysis of

the boundary theory at finite density we need only consider black hole solutions in the

supergravity theory.

The fact that the induced metric for a black hole solution exhibits a horizon dramat-

ically alters the properties of the brane in the presence of an electric field. A general

property of D-branes is that they exhibit an instability for sufficiently large worldvolume

electric field E. For a string with both ends on the D-brane a worldvolume E-field will pull

the endpoints of the string apart. At a critical value Ecrit this force grows large enough to

overcome the string tension and the string is torn apart, hence the instability. For a black

hole embedding any electric field will trigger this instability since Ecrit goes to zero at a

horizon where the vanishing of the time component of the metric makes the string basically

tensionless. At finite density we only have black hole embeddings so at finite density this

instability is always present.

In the field theory this generic instability is simply due to the fact that at finite charge

density any electric field will start to accelerate the charge carriers. In contrast, at zero

density the instability is due to pair creation and only sets in above a nonzero Ecrit set

by the hypermultiplet mass. This nicely illustrates why the Minkowski embeddings with

their nonzero Ecrit are inappropriate for the boundary theory at finite density. The field

theory picture suggests that the endpoint of the instability is a steady state solution with

a constant current where the acceleration due to the external electric field is balanced

against the drag force experienced by the charge carriers. It is this steady state solution

we find from the bulk point of view in this paper. Consistent with this picture, we will see

that the density of charge carriers contributing to the conductivity has two components:

those introduced explicitly in 〈J t〉 and those coming from pair creation in the plasma. We

will also find that this pair creation is suppressed as the hypermultiplet mass increases, as

expected.

So we need to construct D7-brane embeddings corresponding to a field theory plasma

with finite baryon number density 〈J t〉, constant electric field E in the x direction and

a time-independent current 〈Jx〉. For a finite density 〈J t〉 in the boundary theory we

need in the supergravity theory a D7-brane worldvolume gauge field with a nontrivial time

component At(z) for radial coordinate z. To accommodate the electric field and the current

we further need Ax(z, t) = −Et + h(z) so that we have a constant electric field F tx = E

and we require nontrivial z dependence so that we have a nonzero 〈Jx〉. The behavior of

the embedding deep inside AdS-Schwarzschild (near the horizon, roughly speaking) then

uniquely fixes 〈Jx〉 for a given E which allows us to extract the conductivity.

Many transport properties of the N = 4 SYM theory alone have been determined

using AdS/CFT (see the review [11] and references therein). Of direct interest to us will

be the computation of [12]. By weakly gauging a U(1) subgroup of the R-symmetry the
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authors of [12] computed the electrical conductivity of N = 4 SYM theory coupled to this

U(1). Their result agrees with ours in the appropriate limit as we show in section 3.

The drag force on a single heavy quark moving through the N = 4 SYM theory

plasma was computed in [13, 14] from stationary string solutions in the AdS-Schwarzschild

geometry. We will find that in the same regime of large mass (compared to
√

λT ) where a

good quasi-particle description should be valid we can compute the product µM where µ is

the drag coefficient and M is the kinetic mass (distinct from the Lagrangian mass at finite

temperature and density) and find agreement with [13, 14] but only if, as discovered there,

we use a relativistic relation between velocity and momentum. In particular our result is

independent of the density. The conductivity in the large-mass, small external field regime

has precisely the form as that in the Drude model of metals.

Everything we do comes with a caveat: the phase diagram of this theory in the full

parameter space of T , 〈J t〉 and E (in units of the mass) is not complete. We know from [5]

for example that at E = 0 in the plane of 〈J t〉 versus T a region of instabilities does

exist so we know the solutions we use are not the true ground state of the system in that

region. As found in [5] the first order transition that occurs at zero density persists at small

density but ends in a critical point. The line of first-order transitions is the boundary of

the instability region. An assumption throughout this paper of course is that we work at

values of 〈J t〉 and T outside the instability region. Additionally, as mentioned in [5], for

sufficiently large density the system could undergo Bose-Einstein condensation, that is, the

U(1)B could be spontaneously broken.2 If indeed this occurs then our solutions would no

longer be the ground state of the system in that phase.

At finite E the phase diagram is currently unknown. We can say little about large

electric fields which may trigger new transitions and produce new phases. Our results

should be safe in the small-E region, however, where simply by continuity of the first order

transitions seen at E = 0 we expect the phase diagram to be unchanged. More generally,

our results are valid whenever the bulk is governed by a D7-brane black hole embedding.

Our method for computing the conductivity actually requires very few ingredients. We

need only a valid action for the probe brane, which will be the Dirac-Born-Infeld (DBI)

action, and a probe brane worldvolume with a horizon. We may thus generalize our method

to a variety of systems of Dq-brane probes in backgrounds of Dp-branes and write down

a general formula for the conductivity. We compute one example explicitly, a probe D5-

brane in a D3-brane background [16, 17], for which the fundamental-representation fields

are confined to a (2+1)-dimensional defect.

This paper is organized as follows. In section 2 we write down the DBI action for our

system and solve for the gauge fields. In section 3 we compute the conductivity σ. In

section 4 we compute µM in the large-mass limit. In section 5 we generlize our results

2This could happen because the hypermultiplet contains scalars with Yukawa coupling to fermions and

quartic self-coupling and for whom the chemical potential acts as a negative mass squared, allowing a

textbook spontaneous symmetry breaking to occur for large enough chemical potential. Using AdS/CFT

to determine where this occurs will likely be difficult since the only gauge-invariant observables that could

act as order parameters are baryonic operators and dynamical baryons are a difficult problem in AdS/CFT

even at zero temperature and density [15].
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to Dp/Dq systems. We conclude with some discussion in section 6. In the appendix we

compute 〈J t〉 and 〈Jx〉 using holographic renormalization.

2. The probe brane solution

Our AdS5 metric is, in Lorentzian signature and in units where the radius of AdS is one,

ds2 =
dz2

z2
− 1

z2

(1 − z4/z4
H)2

1 + z4/z4
H

dt2 +
1

z2
(1 + z4/z4

H)d~x2 (2.1)

where z−1
H = π√

2
T . The boundary is at z = 0 and the black hole horizon is at z = zH .

Here d~x2 is the metric of three-dimensional Euclidean space. We will denote the metric

components in these directions as gxx. Our S5 metric is

dΩ2
5 = dθ2 + sin2 θdψ2 + cos2 θdΩ2

3. (2.2)

where dΩ2
3 is the standard metric for an S3 and θ runs from zero to π/2.

As explained in the introduction, we introduce a number Nf of D7-branes filling AdS5

and wrapping the S3 ⊂ S5. The DBI action is

SD7 = −NfTD7

∫

d8ξ
√

−det (gab + (2πα′)Fab) (2.3)

plus a Wess-Zumino term that will be zero in what we do. Here TD7 is the D7-brane

tension, ξ are its worldvolume coordinates, gab is the induced worldvolume metric and Fab

is the worldvolume U(1) field strength (here a, b are worldvolume indices). Our convention

is that a string endpoint couples to the worldvolume gauge field with coupling +1.

We want an embedding function θ(z) describing the position of the S3 on the S5 as

well as worldvolume gauge fields At(z) and Ax(z, t). The DBI action becomes

SD7 = −N
∫

dzdt cos3 θgxx

√

|gtt|gxxgzz−(2πα′)2
(

gxxA′
t(z)2+gzzȦx(z, t)2−|gtt|A′

x(z, t)2
)

(2.4)

Here gzz = 1/z2 + θ′(z)2. We have divided both sides of this equation by the volume of R
3

so this is an action density. We have also performed the integration over the S3 directions

which produces a factor of 2π2. We have included this in the prefactor N , which may be

written in terms of boundary theory quantities as

N = NfTD7(2π
2) =

λ

(2π)4
NfNc. (2.5)

where we have used, in our units, α′−2 = 4πgsNc = g2
YMNc = λ. Also important will be

the λ-independent quantity

N (2πα′)2 =
NfNc

(2π)2
. (2.6)

If we were to expand the DBI action to quadratic order in the field strength and compare

the result to the standard form of the Yang-Mills action 1
4g2

∫

F 2 then we would identify

1/g2 = N (2πα′)2.

– 5 –



J
H
E
P
0
9
(
2
0
0
7
)
0
2
4

We want Ax(z, t) = −Et + h(z). We will therefore have two conserved charges since

the action will only depend upon z-derivatives of At(z) and h(z). The conserved charge

associated with At is

cos3 θgxx
−N (2πα′)2gxxA′

t(z)
√

|gtt|gxxgzz − (2πα′)2
(

gxxA′
t(z)2 + gzzȦx(z, t)2 − |gtt|A′

x(z, t)2
)

≡ D (2.7)

The second charge, associated with Ax(z, t), is

cos3 θgxx
N (2πα′)2|gtt|h′(z)

√

|gtt|gxxgzz − (2πα′)2
(

gxxA′
t(z)2 + gzzȦx(z, t)2 − |gtt|A′

x(z, t)2
)

≡ B (2.8)

We can immediately see that D|gtt|h′(z) = −BgxxA
′
t(z). Some algebra lets us eliminate

At(z) and h(z) in favor of D, B and E. We thus have solutions for the gauge fields

gxxA′
t(z)2 =

1

(2πα′)2
|gtt|D2 gzz(|gtt|gxx − (2πα′)2E2)

N 2(2πα′)2|gtt|g3
xx cos6 θ + |gtt|D2 − gxxB2

(2.9)

|gtt|h′(z)2 =
1

(2πα′)2
gxxB2 gzz(|gtt|gxx − (2πα′)2E2)

N 2(2πα′)2|gtt|g3
xx cos6 θ + |gtt|D2 − gxxB2

(2.10)

At the horizon, where |gtt| → 0, we see that the worldvolume magnetic field (a gauge-

invariant observable) Fzx = h′(z) ∼ |gtt|−1/2 blows up. This is not a problem, however.

The quantity that appears in the action is |gtt|h′(z)2 which goes to +gzzE
2 and thus

precisely cancels the −gzzE
2 term in the DBI action. The other terms in the action vanish

individually at the horizon so the action remains finite.

What are the boundary conditions on our gauge fields? Near the z = 0 boundary the

gauge fields asymptotically approach

At(z) = µ − 1

2

D

N (2πα′)2
z2 + O(z4) (2.11)

h(z) = b +
1

2

B

N (2πα′)2
z2 + O(z4) (2.12)

The leading, non-normalizable terms give the sources for the dual operators. At is dual

to J t so we interpret µ as the chemical potential. As in [5] we require At(zH) = 0 which

then fixes D in terms of µ. For h(z) we demand simply that the source term b vanishes.

The sub-leading, normalizable terms of the asymptotic expansion should give expectation

values of the dual operators. In the appendix we find

〈J t〉 = D, 〈Jx〉 = B (2.13)

To obtain a conductivity we need to determine 〈Jx〉 = B for given E and D. For this we

need to extract a further condition on the solution at large z (in the infrared). We will

return to this infrared boundary condition in the next section.
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Having solved for the gauge fields we can write the action in terms of D, B and E

with one dynamical field θ(z),

SD7 = −N
∫

dzdt cos6 θg5/2
xx |gtt|1/2

√

√

√

√

gzz(|gtt|gxx − (2πα′)2E2)

|gtt|g3
xx cos6 θ + |gtt|D2−gxxB2

N 2(2πα′)2

(2.14)

We do not obtain the θ(z) equation of motion from this on-shell action, however. We

should either derive the equation of motion from eq. (2.4) and then plug in the gauge field

solutions or Legendre transform to eliminate the gauge fields at the level of the action and

then derive the equation of motion. The Legendre transform is

S̄D7 = SD7 −
∫

dzdt

(

Fzt
δSD7

δFzt
+ Fzx

δSD7

δFzx

)

(2.15)

= −N
∫

dzdt

√

gzz

|gtt|gxx

√

(|gtt|gxx−(2πα′)2E2)

(

|gtt|g3
xx cos6 θ(z)+

|gtt|D2−gxxB2

N 2(2πα′)2

)

which we can check by noting that indeed δS̄D7

δD = A′
t(z) and δS̄D7

δB = h′(z) as given in

eqs. (2.9) and (2.10).

θ(z) is dual to the hypermultiplet mass operator. The leading, non-normalizable term

of θ(z)’s asymptotic form gives the mass m of the hypermultiplet fields and the sub-leading,

normalizable term gives the expectation value of the mass operator. This expectation value

in terms of θ(z)’s asymptotic coefficients is written in the appendix. We will not need this

much detail, however. All we will need in what follows is that the zero mass solution is

θ(z) = 0 so that cos θ(z) = 1 while a large mass solution, for the D7-brane nearly ending at

the boundary (with a long spike), has θ(z) ≈ π/2 so cos θ(z) ≈ 0. The boundary conditions

on θ(z) are that θ(zH) takes some value between zero and π/2 and θ′(zH) = 0 as needed

for a static solution [10].

3. The conductivity

As mentioned in the introduction, for a finite density in the SYM theory we only need to

consider black hole embeddings in the supergravity theory. This means the z-integration

in the action SD7 of eq. (2.14) goes from the z = 0 boundary to z = zH . Near the horizon,

where |gtt| → 0, both the numerator and denominator under the square root in eq. (2.14)

are negative. At the boundary both numerator and denominator are positive. The only

way for SD7 to remain real all the way from z = zH to z = 0, then, is if both numerator

and denominator change sign at the same special value3 z = z∗ defined by the equations

|gtt|gxx − (2πα′)2E2 = 0 (3.1)

|gtt|g3
xx cos6 θ(z∗) +

|gtt|D2 − gxxB2

N 2(2πα′)2
= 0 (3.2)

3Not surprisingly this is the same argument used in the zero density case of [13, 14] for a single string.

In fact in our case we don’t even need the effective action: we can make the same argument from the gauge

field solutions eqs. (2.9) and (2.10) where the left-hand sides are manifestly positive for all z.
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where all metric components are evaluated at z∗. These two equations allow us to solve

for z∗ and in addition impose one further constraint on the integration constants B and D

and hence will allow us to solve for B in terms of D and E. This is the infrared boundary

condition we have been looking for. We proceed by first solving eq. (3.1) for z∗ as a function

of E:

z2
∗ =

(

√

e2 + 1 − e
)

z2
H (3.3)

where we have introduced the dimensionless quantity

e =
E

π
2

√
λT 2

(3.4)

and the signs are chosen to guarantee that z∗ is a real number between zero and zH . We

will also need gxx(z∗) written in terms of field theory quantities,

gxx(z∗) =
1

z2∗
(1 + z4

∗/z
4
H) = π2T 2

√

e2 + 1. (3.5)

We use eqs. (3.1) and (3.2) to eliminate B in favor of D and E as

B2 = N 2(2πα′)2|gtt|g2
xx cos6 θ +

|gtt|
gxx

D2 (3.6)

=
N2

f N2
c T 2

16π2
E2

√

e2 + 1 cos6 θ +
4

π2λT 4

E2D2

e2 + 1

where in the second line we have converted to field theory quantities. Identifying B = 〈Jx〉
we extract the conductivity

σ =

√

N2
f N2

c T 2

16π2

√

e2 + 1cos6 θ(z∗) +
d2

e2 + 1
(3.7)

where we define d similarly to e,

d =
D

π
2

√
λT 2

=
〈J t〉

π
2

√
λT 2

(3.8)

but notice that while e was dimensionless d has dimension one.

Eq. (3.7) is our main result. It has a simple interpretation. Two types of charge carriers

contribute to the conductivity. One type comes from the charge carriers we have introduced

explicitly, represented by the d2 term. The other type comes from charge carriers thermally

produced in charge-neutral pairs. The effect of these thermally produced pairs should be

Boltzmann suppressed at large mass. Indeed, our conductivity depends upon the mass

of the fundamental, microscopic charge carriers via the cos θ term: taking m → ∞ sends

cos θ → 0 which obviously reduces σ while taking m → 0 sends cos θ → 1 which obviously

enhances σ. This is consistent with the fact that lighter particle/anti-particle pairs can be

more easily excited thermally.

When the mass is large the cos θ term can be neglected and the conductivity is propor-

tional to the density of charge carriers 〈J t〉 as expected in a quasi-particle interpretation.
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In this regime we can compare to the work of [13]. We will return to this in the next

section.

On the other hand, in the limit of zero mass, zero density and zero external field we

can compare our “macroscopic” result for the conductivity with the “microscopic” answer

of [12] where the conductivity was determined from the study of small fluctuations in

equilibrium via a Kubo formula. In [12] σ was the conductivity of the pure N = 4 SYM

theory plasma and a gauged U(1) R-symmetry played the role of electromagnetism. The

answer of [12] may be written as σ = πT/g2 where g2 is the coupling associated with the

bulk Yang-Mills Lagrangian, defined in [18] as g2 = 16π2/N2
c . In our case we find in this

limit

σ =
NfNcT

4π
. (3.9)

For us the Yang-Mills Lagrangian comes from expanding the DBI action to quadratic

order in the gauge field strength. As explained below eq. (2.6) this is 1/g2 = N (2πα′)2 =

NfNc/4π
2 so indeed our answer4 is πT/g2.

4. The drag force

Now we return to nonzero density and external field. We will take the limit where the

mass is much larger than
√

λT [13], for which cos θ ≈ 0. In this case we expect a good

quasi-particle description. We should thus be able to compare our result to that of [13],

who wrote the equation of motion for the quasi-particles

dp

dt
= −µp + f. (4.1)

The external force in our conventions is f = E. Here µ is the friction (or drag) coefficient,

not the chemical potential. We look at the equilibrium case dp
dt = 0. In order to compare

to [13] we employ a relativistic relation between mass and momentum,

µM
v√

1 − v2
= E (4.2)

for kinetic mass M . In [13] it was found that the quasi-particle obeys this relativistic

relation despite the fact that its rest mass and its kinetic mass are not the same. In order

to extract µM we need to compute v as a function of E.

At large mass we expect pair creation to be suppressed so we expect only the charge

carriers in 〈J t〉 to contribute to 〈Jx〉. We may thus write 〈Jx〉 = 〈J t〉v where v is the

velocity of the quasi-particles. Equating this with 〈Jx〉 = σE we have v = σE/〈J t〉. At

large mass we take cos θ ≈ 0 so we can ignore the first term under the square root in

eq. (3.7) to find

v =
d√

e2 + 1

E

〈J t〉 =
e√

e2 + 1
,

v√
1 − v2

= e (4.3)

4Notice also that our coupling between the current and the external vector potential is one so their e
2

factor does not appear in our answer.
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We find simply

µM =
E

e
=

π

2

√
λT 2 . (4.4)

This answer agrees with that of [13], who highlighted the mass independence of this result.

We have found that at nonzero density the result is also independent of the density.

Having identified µM in the large-mass limit we can in addition take the small e limit

of eq. (3.7) and find

σ =
〈J t〉
µM

(4.5)

which is precisely the form of σ in the Drude theory of metals, σ = ne/µm for electrons

of charge e, density n and mass m. Our field theory of very massive charge carriers in a

weak field behaves very much like a Drude metal. This comparison also shows that the

non-linear effects in e can be explained in terms of the pseudo-relativistic behavior of the

quasi-particles displayed in eq. (4.2).

5. Generalization to Dp/Dq systems

A very similar analysis can be applied to Nf probe Dq-branes in the background of Nc

Dp-branes for which the holographic duals will be flavored field theories, possibly with the

flavor fields confined to a defect.5 Our method is applicable to these systems because we

required only that the DBI action be a reliable effective action and that the probe brane

had a worldvolume horizon (with the associated boundary conditions on the worldvolume

gauge fields). We will perform a general analysis and then provide one example, the probe

D5-brane in a background of D3-branes.

The coordinates of a black Dp-brane (p< 7) solution include coordinates parallel to

the Dp-branes and spherical coordinates for the directions transverse to the Dp-branes. In

this background the induced Dq-brane metric will generically be

ds2
Dq = gzzdz2 + gttdt2 + gxxd~x2 + gSSdΩ2

n (5.1)

where z is the radial coordinate. We assume the metric depends only on z and parameters

like T . The Dq-brane wraps some n-sphere Sn in the space transverse to the Dp-brane

worldvolumes. Here gSS is the metric component on this sphere. The Dq-brane worldvol-

ume then includes some R
d with metric components gxx where d = q − n− 1 . We assume

the Dq-brane worldvolume has a horizon zH defined by gtt(zH) = 0. We also hide any

embedding information (such as our θ(z) above) in the components of this induced metric.

The Dp-brane background will also generally include a nontrivial dilaton φ(z).

We now introduce At(z) and Ax(z, t) = −Et+h(z) with the usual boundary conditions.

The Dq-brane action is then

SDq = −NfTDqVn

∫

dzdte−φg(d−1)/2
xx g

n/2
SS

√

gzzgxx|gtt|−(2πα′)2(gxxA′2
t +gzzȦ2

x−|gtt|A′2
x )

(5.2)

5At zero temperature these systems for general p and q were analyzed in [19, 20].
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where TDq is the Dq-brane tension and Vn is the volume of a unit Sn. We have divided

both sides by the volume of R
d. Comparing to eq. (2.4) we can see that everything will be

identical to what we have already done but with the replacements

N → Nq ≡ NfTDqVn (5.3)

gxx cos3 θ → e−φg(d−1)/2
xx g

n/2
SS (5.4)

In particular 〈J t〉 = D and 〈Jx〉 = B are still true (see the appendix). We may jump to

the equations

|gtt|gxx − (2πα′)2E2 = 0 (5.5)

e−2φgd
xxgn

SS |gtt| +
|gtt|D2 − gxxB2

N 2
q (2πα′)2

= 0 (5.6)

both evaluated at z∗. We again construct σ = 〈Jx〉/E = B/E,

σ =
√

N 2
q (2πα′)4e−2φgd−2

xx gn
SS + (2πα′)2g−2

xx D2. (5.7)

This is the general form. To go beyond this requires choosing a specific system.

For this σ the value d = 2 is clearly special: the gxx factor in the first term drops out.

Upon translating to boundary theory quantities this means some non-linearities in E are

dropping out.6 This leads us to the example of a probe D5-brane in the same D3-brane

background we have considered above. In this case the dual theory is N = 4 SYM theory

in 3+1 dimensions coupled to Nf massive fields in the fundamental representation that are

confined to a (2+1)-dimensional defect. The D5-brane wraps AdS4 ×S2 inside AdS5 ×S5.

We have d = 2, n = 2 , φ(z) = 0 and the S2 metric component gSS = cos2 θ(z) has the

same interpretation as for the D7-brane. We find

σ =

√

4N2
f N2

c

π2λ
cos4 θ(z∗) +

d2

e2 + 1
(5.8)

where d and e are defined as before but now d is dimensionless (D has dimension two in 2+1

dimensions) so σ is dimensionless as it should be. Notice that taking zero density and zero

mass gives a constant so in this limit 〈Jx〉 is purely linear in E. We may compare this result

to that of [21] where σ was the conductivity of N = 8 SYM theory in (2+1) dimensions and

a U(1) subgroup of the SO(8) R-symmetry played the role of electromagnetism. The result

of [21] was σ = 1/g2 where g was the coupling of the U(1) Yang-Mills theory formulated

on AdS4. Again we idenfity g in our case by expanding the DBI action of the D5-brane

to quadratic order in the field strength to find 1/g2 = N5(2πα′)2 = 2NfNc/π
√

λ so indeed

our answer in this limit is σ = 1/g2.

6This is also the right dimension to have interesting phenomena, such as the quantum Hall effect, govern

the conductivity.
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6. Discussion and conclusion

We have computed the conductivity of a finite density of massive N = 2 hypermultiplets

in an N = 4 SYM theory plasma. In contrast to earlier work using AdS/CFT to study

transport coefficients our approach is “macroscopic” in the sense that we directly calculate

the response (in our case the current) as a result of a large external perturbation of the

plasma (the electric field). This method nicely complements the existing studies which

relate transport to small fluctuations in equilibrium via the Kubo formulas.

For massless flavors and zero density our result completely agrees with answers from

the small fluctuation analysis. For small but finite masses a similar comparison to a small

fluctuation analysis performed for a zero density black hole embedding should be possible

but has not been performed yet. At large mass (compared to
√

λT ), where the zero density

embedding for the flavor brane is a Minkowski embedding, the classical small fluctuation

analysis would give σ = 0 since the induced metric on the flavor brane has no horizon

and hence no purely outgoing boundary conditions, which are the source of dissipative

phenomena in the bulk, could be imposed. Only quantum fluctuations of the flavor brane

could reveal the conductivity in that case. Our answer encompases all of these cases.

We emphasize that we have worked at leading order in Nf/Nc at large Nc, or in

supergravity language, we have not included the backreaction of the D7-branes. If we were

to do so the corresponding solution would no longer be static. The external field E is

pumping energy and momentum into the system at a finite rate so the total energy and

momentum have to grow linearly in time. At first it seems puzzling how the gravitational

backreaction of the D7-brane should see this. The stress tensor associated with the DBI

action only depends on the gauge invariant field strength (not on the vector potential itself)

and so is completely static for our solution. One can find a solution to Einstein’s equation

with this source that is completely static. This solution has to be unphysical due to the

boundary conditions imposed at the horizon. It is well known that close to the horizon

at least the linearized Einstein’s equations reduce to a standard wave equation. For eiωt

time dependence one demands as a physical boundary condition that the wave is purely

outgoing, that is, nothing comes back into the physical space through the horizon. For zero

ω one has to be more careful: both a constant and a solution linear in time are possible.

The correct boundary condition on the horizon capturing the physics of the field theory

must pick the solution linear in time.

For the stationary solution 〈Jx〉 = σE to be valid the charged quasiparticles need

to dissipate their momentum so we can balance the drag force against the external force

from the external field. If the densities of charged (N = 2 hypermultiplet) and uncharged

(N = 4 SYM theory) particles were comparable, momentum conservation would dictate

that the drag force that allowed the charge carriers to dissipate their momentum would at

the same time accelerate the uncharged parts of the plasma and no stationary stage could

be reached. In other words, the hypermultiplet fields would begin to drag the N = 4 SYM

theory plasma along with them, which is clearly not a stationary solution. In our case

however only the fundamental-representation fields carry charge so that the energy density

of charge carriers is of order NfNc while the energy density of the neutral part of the
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plasma is of order N2
c . The charge carriers can dissipate an order Nc momentum density

at a constant rate without causing any meaningful velocities in the N = 4 SYM theory

plasma. Only after time t ∼ Nc will the momentum in the neutral plasma have built up

to order N2
c and hence give velocities of order one. At such late times a simple description

of the form 〈Jx〉 = σE will break down. In this way the background N = 4 plasma

at large Nc acts like the lattice in solid state physics (again suggesting out title): it can

absorb an arbitrary amount of momentum without experiencing significant macroscopic

motion. Unlike the lattice, it does so simply by its large density rather than by breaking

translational invariance.

For the future one should be able to use our macroscopic approach to get a better

understanding of transport properties of various strongly coupled systems via AdS/CFT.

Especially promising seems to be the application to the (2+1)-dimensional case where

conductivities in the presence of magnetic fields could exhibit quantum Hall behavior.
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A. Holographic renormalization

The AdS/CFT dictionary equates the on-shell action SD7 with the generating functional

of field theory correlation functions. The on-shell action, however, is divergent due to

integration over the infinite volume of AdS space, that is, due to integration all the way

to the boundary at z = 0. Holographic renormalization (holo-rg) [22 – 25] regulates the

divergence by introducing a cutoff z = ǫ and then adding counterterms on the z = ǫ slice

to cancel divergences before taking ǫ → 0.

We find (from its equation of motion) that θ(z) has an asymptotic expansion

θ(z) = θ0z + θ2z
3 + . . . . (A.1)

Plugging this asymptotic form into the regulated action we find the divergences

Sreg = −
∫ zH

ǫ
L = −N

∫ zH

ǫ
dz

(

z−5 − θ2
0z

−3 − 1

2
(2πα′)2E2z−1 + O(z)

)

(A.2)

The first two terms are clearly divergent as ǫ → 0. The counterterms we need to cancel

these divergences are [26]

L1 =
1

4
N√−γ, L2 = −1

2
N√−γθ(ǫ)2, Lf = N 5

12

√−γθ(ǫ)4 (A.3)

where γij is the induced metric on the z = ǫ slice and γ is its determinant. Notice that√−γ = ǫ−4 + O(ǫ4). As explained in [26] supersymmetry requires the third counterterm,

which is finite.
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In all of the equations above we have suppressed a factor of
∫

dt. We will continute

to do so until we compute 〈Jx〉 since only Ax has time dependence. The last divergence

requires a counterterm

LF = −1

4
N (2πα′)2

√−γF ijFij log ǫ (A.4)

= −1

4
N (2πα′)2

√−γγijγklFikFjl log ǫ

= +
1

2
N (2πα′)2E2 log ǫ + O(ǫ4 log ǫ)

The generating functional of the boundary theory is then the ǫ → 0 limit of SD7 =

Sreg +
∑

i Li. We interpret the leading coefficient θ0 as the source for the dual operator,

which we denote as7 〈ψ̄ψ〉. In other words we equate θ0 with the mass8 of the fundamental-

representation fields. The expectation value of this operator is [26]

〈ψ̄ψ〉 = lim
ǫ→0

1

ǫ3

1√−γ

δSD7

δθ(ǫ)
= −N

(

−2θ2 +
1

3
θ3
0

)

. (A.5)

We need to compute expectation values of the U(1) current components 〈J t〉 and 〈Jx〉.
In the formalism of holographic renormalization 〈J t〉 is

〈J t〉 = lim
ǫ→0

1

ǫ4

1√−γ

δSD7

δAt(ǫ)
(A.6)

Making arguments similar to those of [5], we have

δSD7 = −
∫ zH

ǫ
dz

δL
δ∂zAt

∂zδAt = −D

∫ zH

ǫ
dz∂zδAt = −D (δAt(zH) − δAt(ǫ)) . (A.7)

We enforce the boundary condition δAt(zH) = 0 at the horizon. We thus find δSD7

δAt(ǫ)
= D

and hence 〈J t〉 = D.

The density 〈Jx〉 is slightly more subtle because Ax is time dependent. In holo-rg we

have

〈Jx〉 = lim
ǫ→0

1

ǫ4

1√−γ

δSD7

δAx(ǫ)
(A.8)

We now have two terms (reinstating
∫

dt)

δSD7 = −
∫

dtdz

(

δL
δ∂zAx

∂zδAx +
δL

δ∂tAx
∂tδAx

)

. (A.9)

We employ the same argument as before for the first term,

−
∫ zH

ǫ
dz

δL
δ∂zAx

∂zδAx = −B (δAx(zH) − δAx(ǫ)) = BδAx(ǫ). (A.10)

In the second term δL
δ∂tAx

is t-independent on-shell and hence

−
∫

dtdz
δL

δ∂tAx
∂tδAx = −

∫

dz
δL

δ∂tAx

∫

dt∂tδAx = 0 (A.11)

7The exact operator is written in [5].
8Up to a normalization explained in section 3.2 of [10].
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where we have demanded that the fluctuation be well-behaved (vanishing) at t = ±∞
so that

∫

dt∂tδAx = δAx(+∞) − δAx(−∞) = 0. The counterterm LF gives a vanishing

contribution to 〈Jx〉 for the same reason

δLF = −1

4
N (2πα′)2

√−γγijγkl

∫

dt
δ

δ∂tAx
(FikFjl) ∂tδAx log ǫ (A.12)

= +
1

2
N (2πα′)2Ȧx(ǫ) log ǫ

∫

dt∂tδAx + O(ǫ4 log ǫ)

= O(ǫ4 log ǫ) .

We then have δSD7

δAx(ǫ) = B and hence 〈Jx〉 = B.

In regard to section 5 we can see that these results will be valid for any probe Dq-

brane. The identification of 〈J t〉 = D depended only on the behavior of At(z) in the radial

direction, which will be unchanged for the class of systems we considered (probe branes

with worldvolume horizons). A similar statement applies for the identification 〈Jx〉 = B.

The one subtlety is that additional counterterms may appear for different systems. No

such counterterms can change these results, however. Any counterterm on the z = ǫ slice

must be built from gauge- and Lorentz-invariant combinations of the field strength. The

only component of the field strength that could contribute would be Ftx (and not Fzt or

Fzx). The crucial point is that Ftx = −E is time-independent so we will always end up

with
∫

dt∂tδAx = 0 as above.
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